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1 Introduction

The AFOSR grant reported on here ran originally for three years, and then had a no-cost extension to
the fourth year ending in mid-summer 1996 associated with the PI’s move from Yale to UCSD. During
that time numerous publications and a PhD thesis were produced. Most of this material is provided as
an appendix to this report, to allow readers to reproduce any of the results reported here. The appendix
may be consulted for a wealth of details down to the implementations of our algorithms; here we just
provide an overview of work accomplished.

The research centered on the development of new and potentially automatable methods for making
the transition from constrained optimization problems (which formalize applications in machine learning,
vision, and many other domains) to improved (and usually neuromorphic) algorithms for solving such
constrained optimization problems. The work divides naturally into the mathematical methods side
and the applications side.

2 Optimization Methods

A major theme of the optimization work is to invent improved nonlinear optimization methods which
can be introduced semi-automatically or automatically by means of algebraic transformations [1] on the
objective functions and constraints which formulate the problem. This theme appears in a number of
novel optimization methods described below. Two of these nonlinear optimization methods have been
scaled up into the range of solving for around one million unknown variables.

In mathematical optimization methods, one major innovation was the “soft-assign” approach to
solving combinatorial optimization problems involving unknown permuation matrices (such as quadratic
assignment and graph-matching problems) which arise in computer vision, scheduling and elsewhere.
The introduction of this method is amenable to automation using the “angle bracket” notation for
symbolically expressing a set of algorithm phases in which different subsets of the variables are optimized.
This work is detailed in a journal article [2] and a proof of convergence is forthcoming in a conference
paper [3]. The method has been tested on problems at the intersection of machine vision and learning,
with on the order of a million unknown discrete variables.
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A second major effort was the integration of our previous nonlinear multiscale optimization algo-
rithm for relaxation-based neural networks [4] with three other key methods: a novel “focus of attention”
method for optimizing the most important set of variables at each step of the algorithm, and (more
conventionally) a trust region method for robust local optimizations and a “deterministic annealing”
continuation method for avoiding spurious local minima. The focus-of-attention method, like the non-
linear multiscale acceleration method, can be incorporated symbolically since the objective function
for choosing the focus of attention is calculated from derivatives of the original objective function. All
four methods were synthesized and shown to advantage on large-scale problems (up to about 800,000
variables) in a PhD thesis [5] and in a preceding conference paper [6] and SIAM talk [7].

Another direction for accelerating the convergence of relaxation (optimization) neural networks was
demonstrated in 8] in which boundary layer methods were adapted to this class of problems.

The combinatorial optimization problems addressed efficiently by the soft-assign algorithm are in
general NP-complete, so we cannot reasonably hope to invent the final algorithm. But we can explore the
tradeoff between speed, algorithm size, and the quality of the local minima reached measured against the
(possibly unknown) global minimum. A slower algorithm which however solves harder graph matching
problems than soft-assign is introduced in [9], the journal publication of a method first presented at
a neural network conference [10]. Again, the method is derived by means of an algebraic (symbolic)
transformation [1] of the original graph-matching objective function.

The parallel implementation of relaxation-based neural networks is addressed from the point of view
of algebraic transformations in [11], in which it is shown how to algebraically introduce extra variables
at the boundaries of a partition of a large optimization problem into smaller interacting subproblems
which are assigned to multiple processors in a network of workstations. The extra variables take account
of communication delays between processors. Good speedup is demonstrated for large problems.

Finally a theoretical framework for dynamical systems which optimize large-scale objective functions
is developed in [12], which shows how alternative dynamics such as attention mechanisms and virtual
variables (virtual neurons) can be introduced using a modified Lagrangian formulation of the dynamics
(not just the optimization problem). This is similar to the approach to dynamics taken in fundamental
physics, except that our dynamics are dissipative. This paper also addresses the question of finding the
computationally fastest (implementable) dynamical system for optimizing a given objective function,
from within a family of alternative dynamical systems.

2.1 Selected Abstracts on Optimization Methods

In this subsection we reproduce the abstracts of most of the references in the Optimization Methods,
to provide a second, more detailed level of overview for the work included in the Appendix. Each title
cites the corresponding full paper (see the References section) and the abstracts also appear in the order
in which they were introduced.

A novel optimizing network architecture with applications [2]
Anand Rangarajan, Steven Gold, Eric Mjolsness

Abstract

We present a novel optimizing network architecture with applications in vision, learning, pattern
recognition and combinatorial optimization. This architecture is constructed by combining the follow-
ing techniques: (i) deterministic annealing, (ii) self-amplification, (iii) algebraic transformations, (iv)
clocked objectives and (v) softassign. Deterministic annealing in conjunction with self-amplification
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avoids poor local minima and ensures that a vertex of the hypercube is reached. Algebraic trans-
formations and clocked objectives help partition the relaxation into distinct phases. The problems
considered have doubly stochastic matrix constraints or minor variations thereof. We introduce a
new technique, softassign, which is used to satisfy this constraint. Experimental results on different
problems are presented and discussed.

A convergence proof for the softassign quadratic assignment algorithm [3]
Anand Rangarajan, Alan Yuille, Steven Gold, and Eric Mjolsness

Abstract

The softassign quadratic assignment algorithm has recently emerged as an effective strategy for
a variety of optimization problems in pattern recognition and combinatorial optimization. While the
effectiveness of the algorithm was demonstrated in thousands of simulations, there was no known
proof of convergence. Here, we provide a proof of convergence for the most general form of the
algorithm.

A Multiscale Attentional Framework for Relaxation Neural Networks [6]
Dimitris I. Tsioutsias and Eric Mjolsness

Abstract

We investigate the optimization of neural networks governed by general objective functions. Prac-
tical formulations of such objectives are notoriously difficult to solve; a common problem is the poor
local extrema that result by any of the applied methods. In this paper, a novel framework is in-
troduced for the solution of large-scale optimization problems. It assumes little about the objective
function and can be applied to general nonlinear, non-convex functions; objectives in thousand of
variables are thus efficiently minimized by a combination of techniques - deterministic annealing,
multiscale optimization, attention mechanisms and trust region optimization methods.

A Lagrangian Relaxation Network for Graph Matching [9]
Anand Rangarajan and Eric Mjolsness

Abstract

A Lagrangian relaxation network for graph matching is presented. The problem is formulated as
follows: given graphs G and g, find a permutation matriz M that brings the two sets of vertices into
correspondence. Permutation matrix constraints are formulated in the framework of deterministic
annealing. Our approach is similar to a Lagrangian decomposition approach in that the row and col-
umn constraints are satisfied separately with Lagrange multipliers used to equate the two “solutions.”
Lagrange parameters also express the graph matching constraint. Due to the unavoidable symmetries
involved in graph matching (resulting in multiple global minima), we add a self-amplification term in
order to obtain a permutation matrix. With the application of a fixpoint preserving algebraic trans-
formation to both the distance measure and the self-amplification terms, we obtain a Lagrangian
relaxation network. The network performs minimization with respect to the Lagrange parameters
and maximization with respect to the match matrix variables. Simulation results are shown on 100
node random graphs and for a wide range of connectivities.
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Optimization Dynamics for Partitioned Neural Networks [11]
Dimitris I. Tsioutsias and Eric Mjolsness

Abstract

Given a relaxation-based neural network and a desired partition of the neurons in the network into
modules with relatively slow communication between modules, we investigate relaxation dynamics
for the resulting partitioned neural network. In particular, we show how the slow inter-module com-
munication channels can be modeled by means of certain transformations of the original objective
function which introduce new state variables for the inter-module communication links. We report on
a parallel implementation of the resulting relaxation dynamics, for a two-dimensional image segmen-
tation network, using a network of workstations. Experiments demonstrate a functional and efficient
parallelization of this neural network algorithm. We also discuss implications for analog hardware
implementations of relaxation networks.

A Lagrangian Approach to Fixed Points [13]
Eric Mjolsness and Willard L. Miranker

Abstract

We present a new way to derive dissipative, optimizing dynamics from the Lagrangian formulation
of mechanics. It can be used to obtain both standard and novel neural net dynamics for optimization
problems. To demonstrate this we derive standard descent dynamics as well as nonstandard variants
that introduce a computational attention mechanism.

Greedy Lagrangians for Neural Networks:
Three Levels of Optimization in Relaxation Dynamics [12]
Eric Mjolsness and Willard L. Miranker

Abstract

We expand the mathematical apparatus for relaxation networks, which conventionally consists of
an objective function E and a dynamics given by a system of differential equations whose trajectories
diminish E. Instead we (1) retain the objective function E, in a standard neural network form, as
the measure of the network’s computational functionality; (2) derive the dynamics from a Lagrangian
function L which depends on both E and a measure of computational cost; and (3) tune the form of
the Lagrangian according to a meta-objective M which may involve measuring cost and functionality
over many runs of the network. The essential new features are the Lagrangian, which specifies an
objective function that depends on the neural network’s state over all times (analogous to Lagrangians
which play a similar fundamental role in physics), and its associated greedy functional derivative from
which neural-net relaxation dynamics can be derived.

The combination of Lagrangian and meta-objective suffice to derive and provide an interpretation
for clocked objective functions, a useful notation for algebraically formulating and designing neural
network applications, possibly with the assistance of symbolic computation. Clocked objectives thus
generalize the original static objective function E as a practical neural network specification language.

With these methods we are able to analyze the approximate optimality of Hopfield/Grossberg
dynamics, the generic emergence of sub-problems involving learning and scheduling as aspects of
relaxation-based neural computation, the integration of relaxation-based and feed-forward neural
networks, and the control of computational attention mechanisms using priority queues, coarse-scale
blocks of neurons, default-valued neurons, and other special-case optimization algorithms.
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3 Applications

Most but not all of the applications with which we experimented were taken from computer
vision and learning, using either dense images or sparse image feature sets as data. The
multiscale attention mechanism [5, 6] was tested on large image segmentation problems as
well as on more abstract graph-partition problems.

A major class of applications in computer vision is related to correspondence problems
between two sparse image feature sets, i.e. finding which feature if any in one image cor-
responds to which feature in another image, and deriving the consequences of such iden-
tifications. We solve correspondence problems under a wide variety of noise conditions in
[14] using the soft-assign optimization algorithm described in [2], and use that capability to
learn new object models (themselves sparse feature sets) from unlabelled data in [15, 16].

The model-learning experiments and the region segmentation experiments were each
extended to large-scale global nonlinear optimization problems, on the order of a million
variables.

3.1 Selected Abstracts on Applications

In this subsection we reproduce the abstracts of most of the references in the Applications
section, to provide a second, more detailed level of overview for the work included in the
Appendix. Each title cites the corresponding full paper (see the References section) and the
abstracts also appear in the order in which they were introduced.

New Algorithms for 2D and 3D Point Matching:
Pose Estimation and Correspondence [14]
Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness

Abstract

A fundamental open problem in computer vision—determining pose and correspon-
dence between two sets of points in space—is solved with a novel, fast, robust and easily
implementable algorithm. The technique works on noisy 2D or 3D point sets that may
be of unequal sizes and may differ by non-rigid transformations. Using a combination of
optimization techniques such as deterministic annealing and the softassign, which have re-
cently emerged out of the recurrent neural network/statistical physics framework, analog
objective functions describing the problems are minimized. Over thirty thousand experi-
ments, on randomly generated points sets with varying amounts of noise and missing and
spurious points, and on hand-written character sets demonstrate the robustness of the
algorithm.

Learning with Preknowledge:
Clustering with Point and Graph Matching Distance Measures [15]
Steven Gold, Anand Rangarajan and Eric Mjolsness

Abstract

Prior knowledge constraints are imposed upon a learning problem in the form of dis-
tance measures. Prototypical 2-D point sets and graphs are learned by clustering with
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point matching and graph matching distance measures. The point matching distance
measure is invariant under affine transformations - translation, rotation, scale and shear
- and permutations. It operates between noisy images with missing and spurious points.
The graph matching distance measure operates on weighted graphs and is invariant under
permutations. Learning is formulated as an optimization problem. Large objectives so
formulated (~ million variables) are efficiently minimized using a combination of opti-
mization techniques - algebraic transformations, projection methods, clocked objectives,
and deterministic annealing.

Clustering with a Domain-Specific Distance Measure [17]
Steven Gold, Eric Mjolsness:and Anand Rangarajan

Abstract

With a point matching distance measure which is invariant under translation, rotation
and permutation, we learn 2-D point-set objects, by clustering noisy point-set images.
Unlike traditional clustering methods which use distance measures that operate on fea-
ture vectors — a representation common to most problem domains — this object-based
clustering technique employs a distance measure specific to a type of object within a
problem domain. Formulating the clustering problem as two nested objective functions,
we derive optimization dynamics similar to the Expectation-Maximization algorithm used
in mixture models.

4 Conclusion

We have described the AFOSR-funded work at three levels of detail. First, we provided
a broad overview of (a) neuromorphic mathematical optimization methods amenable to
algebraic manipulation, and (b) a few of their applications. Second, we included the abstracts
of most of the resulting conference and journal papers to add a little more technical detail.

Finally in the Appendix, for com ientific reproducibility, we include the actual papers
on these topics alemgwith a PhD dissertation. ¢ W Naeoin
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